Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. The fundamental process of star formation in galaxies involves the intricate interplay between the fueling of star formation via molecular gas and the feedback from recently formed massive stars that can, in turn, hinder the conversion of gas into stars. This process, by which galaxies evolve, is also closely connected to the intrinsic properties of the interstellar medium (ISM), such as structure, density, pressure, and metallicity. Aims. To study the role that different molecular and atomic phases of the ISM play in star formation, and to characterize their physical conditions, we zoom into our nearest neighboring galaxy, the Large Magellanic Cloud (LMC; 50 kpc), the most convenient laboratory in which to study the effects of the lower metal abundance on the properties of the ISM. The LMC offers a view of the ISM and star formation conditions in a low-metallicity (Z~ 0.5 Z⊙) environment similar, in that regard, to the epoch of the peak of star formation in the earlier Universe (z~ 1.5). Following up on studies carried out at galactic scales in low-Z galaxies, we present an unprecedentedly detailed analysis of well-known star-forming regions (SFRs) at a spatial resolution of a few parsecs. Methods. We mapped a 610pc× 260pc region in the LMC molecular ridge in [C II]λ158 µm and the [O III]λ88 µm using the FIFI-LS instrument on the SOFIA telescope. We compared the data with the distribution of the CO(2−1) emission from ALMA, the modeled total infrared luminosity, and the Spitzer/MIPS 24 µm continuum and Hα. Results. We present new large maps of [CII] and [OIII] and perform a first comparison with CO(2−1) line and LTIR emission. We also provide a detailed description of the observing strategy with SOFIA/FIFI-LS and the data reduction process. Conclusions. We find that [CII] and [OIII] emission is associated with the SFRs in the molecular ridge, but also extends throughout the mapped region, and is not obviously associated with ongoing star formation. The CO emission is clumpier than the [C II] emission and we find plentiful [C II] present where there is little CO emission, possibly holding important implications for “CO-dark” gas. We find a clear trend of the L[C II]/LTIRratio decreasing with increasing LTIRin the full range. This suggests a strong link between the “[C II]-deficit” and the local physical conditions instead of global properties.more » « lessFree, publicly-accessible full text available October 1, 2026
-
ABSTRACT JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $$\mu$$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $$\mu$$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $$\mu$$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $$\mu$$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves.more » « less
An official website of the United States government
